Однополярное питание операционных усилителей

Мобильные электронные системы с питанием от батарей получают все большее распространение.
Обычно в них используется однополярное питание напряжением 5 В и меньше. Схемы с однополярным
питанием позволяют уменьшить сложность источника питания и зачастую повысить экономичность
устройств.

Операционные усилители (ОУ)  преимущественно используются в схемах с двухполярным питанием, поскольку входные и выходные сигналы ОУ чаще всего могут иметь как положительную так и отрицательную полярность относительно общей шины схемы. В случае, если не инвертирующий вход ОУ соединен с общей шиной, синфазное входное напряжение, вызывающее погрешность преобразования сигнала схемой на ОУ, отсутствует (рис. 1).

Тогда выходное напряжение ОУ   Vout=-Vin R2/R1 .

Если источник входного сигнала не соединен с общей шиной (рис. 2, а), то разность потенциалов Vсф между общей шиной и выводом источника входного сигнала влияет на выходное напряжение Vout=-(Vin+Vсф)R2/R1 .

Иногда это допустимо, но чаще выходное напряжение усилителя должно обязательно определяться только входным сигналом Vin. В таком случае ОУ используется в дифференциальном включении, причем на второй вход подается смещение, в точности равное Vсф  (рис. 2, б). Напряжение Vсф существует в обеих входных цепях, и, следовательно,
является синфазным входным сигналом. Схема инвертирующего включения ОУ с однополярным питанием приведена на рис. 3.

Здесь входное напряжение привязано не к средней точке источника питания, как это обычно делается в случае двухпоярного питания ОУ, а к отрицательному полюсу источника питания. Эта схема не работает, если входное напряжение положительно, поскольку выходное напряжение должно в этом случае становиться отрицательным, а отрицательного источника питания здесь нет. Для нормальной работы с отрицательными входными сигналами в этой схеме следует  использовать  ОУ, допускающие соединение входов с шинами питания. Непременное требование соединения входов с общей шиной или другим опорным напряжением затрудняет  построение схем на ОУ с однополярным питанием. Наиболее естественно использовать однополярное питание операционных усилителей тогда, когда источник входного сигнала однополярный, например, фотодиод (рис. 4).

В других случаях могут использоваться различные способы смещения входных и выходных напряжений ОУ.

Смещение ОУ с однополярным питанием

На рис. 5 представлены три основные схемы подключения источника смещения при однополярном питании ОУ.

Схема на рис. 5, а  представляет собой инвертирующий сумматор,

на рис. 5, б —дифференциальный усилитель,

а на рис. 5, в — неинвертирующий сумматор.

В общем случае связь между входными и выходными напряжениями в этих схемах можно представить уравнением

 Vout= kVin+b . (3)

Уравнению (3)  соответствует график статической переходной характеристики схемы с ОУ в виде прямой
линии (рис. 6).

таблица 1.

В табл. 1 приведены значения постоянных k и b для уравнения (2), соответствующих схемам на рис. 5. Если в схеме на рис. 5, б поменять местами источники VIN и VOF, то такому включению соответствует нижняя строка в графе «Рис. 5, б» табл. 1.
Схемы и значения постоянных k и b выбираются так, чтобы при любых возможных значениях входного напряжения
VIN выполнялось условие  0 < VOUT < VS.  (4)
Обычно k определяется необходимым усилением схемы, поэтому разработчик может выбрать только конфигурацию схемы и постоянную b. Более подробно смещение ОУ при однополярном питании рассматривается в [1]. Типовая схема включения ОУ для усиления сигналов переменного тока с питанием от однополярного источника приведена на рис. 7.

Здесь напряжение смещения равно половине напряжения питания. Резисторы делителя цепи смещения могут быть выбраны достаточно высокоомными, что бы не нагружать источники питания и входного сигнала.

Введение искусственной нулевой точки

От использования цепей смещения можно отказаться, если ввести искусственную нулевую (среднюю) точку, т. е. точку схемы, потенциал которой располагается приблизительно посередине между потенциалами положительного и отрицательного полюсов однополярного источника питания. Для того, чтобы схема могла усиливать биполярные сигналы, источник входного сигнала включается между входом инвертирующего усилителя и искусственной  нулевой  точкой
(рис. 8 ).

При этом, чтобы избежать смещения выходного напряжения,  нагрузку  R включают между выходом усилителя и искусственной нулевой точкой. Это усложняет построение цепей, формирующих нулевую точку.

На рис. 9 представлены примеры схем формирования потенциала нулевой точки. Наиболее простым является резистивный делитель напряжения, средняя точка которого соединена с искусственной нулевой точкой 0 (рис. 9, а). Однако при наличии нагрузки RL ток нагрузки IL протекает через один из резисторов этого делителя, создавая не симметрию напряжений между полюсами источника питания и точкой 0,  причем степень этой не симметрии зависит от силы тока
нагрузки. Уменьшение сопротивлений делителя снижает не симметрию этих напряжений, но при этом возрастают потери энергии в делителе.
Схема со стабилитроном (рис. 9, б) обеспечивает хорошую стабилизацию потенциала искусственной нулевой точки относительно отрицательного полюса источника питания. В качестве стабилитрона в этой схеме целесообразно применение двухвыводного источника опорного напряжения (или регулируемого трехвыводного, такого как, например,
(TL431). Эта схема хорошо работает при вытекающем выходном токе ОУ, но для сохранения стабильности потенциала точки 0 при значительном втекающем выходном токе требуется резистор R с низким сопротивлением, что опять-таки
обуславливает повышенные потери. Аналогичные проблемы возникают при использовании для формирования искусственной нулевой точки стабилизатора напряжения с последовательным регулирующим элементом.
Лучшие характеристики имеет схема с операционным усилителем, подключенным по схеме не инвертирующего повторителя к средней точке резистивного делителя напряжения (рис. 9, в). В данной схеме делитель может быть высокоомным, т. к. он нагружен только входным током покоя операционного усилителя. ОУ сравнивает потенциал на выходе схемы с потенциалом в средней точке делителя и поддерживает напряжение на своем выходе таким, чтобы разность сравниваемых потенциалов была равна нулю. Этот эффект достигается благодаря действию отрицательной обратной связи. При малых токах покоя, потребляемых этой схемой (менее 1 мА), такой активный делитель имеет выходное сопротивление не более 1 Ом.

Еще более эффективно применение специальных микросхем для формирования искусственной нулевой точки (рис. 9, г). Фирма Texas Instruments (США) выпускает ИМС типа TLE2425. Эта ИМС изготавливается в малогабаритном трех выводном корпусе ТО-92 и обеспечивает ток через искусственную среднюю точку до 20 мА в любом направлении при токе собственного потребления не более 0,25 мА и динамическом выходном сопротивлении не более 0,22 Ом. В том случае, если нагрузка может быть не связана с общей точкой схемы или с какой-либо из шин питания, можно использовать простейший вариант формирования искусственной нулевой точки на резистивном делителе (рис. 9, а),  но с мостовой усилительной схемой (рис. 9, д).

В этой схеме инвертирующий повторитель на ОУ2 создает на нижнем полюсе нагрузки RL потенциал, противофазный по отношению к потенциалу верхнего ее полюса.Здесь в искусственную нулевую точку втекает ток, равный VIN/R1, поэтому сопротивление резистора R1 следует взять по возможности большим, иначе возможна не симметрия нулевой точки. Дополнительные достоинства этой схемы: увеличение максимальной амплитуды напряжения
на нагрузке в два раза при том же напряжении питания и заметное повышение КПД при полном размахе выходного напряжения.

Расширение динамического диапазона

Снижение напряжения питания ОУ от обычных +15 В до однополярного 5 В значительно уменьшает амплитудный диапазон входного и выходного напряжений. Амплитудный диапазон в данном случае можно определить как разность между максимально и минимально возможными входными (выходными) напряжениями. Применение усилителей, рассчитанных на двухполярное питание, возможно и с однополярным питанием, но, во-первых, при низкой разности потенциалов между выводами питания далеко не все типы таких ОУ имеют приемлемые характеристики (например, коэффициент усиления), а во-вторых, амплитудный диапазон их выходных напряжений сравнительно мал из-за довольно больших напряжений насыщения транзисторов выходного каскада. Размах выходного напряжения обычных усилителей общего применения не доходит до верхнего и нижнего потенциалов источника питания на 1…2 В при номинальной нагрузке. При питании такого усилителя от однополярного источника напряжением 5 В, амплитудный диапазон выхода составит 1…3 В. Это означает серьезное снижение соотношения сигнал/шум и уменьшение разрешающей способности схемы.

В настоящее время для работы от низковольтных источников питания, в том числе и однополярных, разработано большое количество моделей ОУ с полным размахом выхода(«Rail-to-Rail»). Выходное напряжение таких усилителей при работе на  холостом  ходу может  изменяться практически от потенциала отрицательного полюса источника питания до потенциала положительного полюса.

Схемотехника выходных каскадов усилителей с полным размахом выхода и обычных ОУ различна. Выходной каскад обычных ОУ строится по схеме с общим коллектором на комплиментарных транзисторах (рис. 10, а).

При использовании такого схемного решения минимальное падение напряжения на выходном транзисторе принципиально не может быть снижено. Как следует из схемы на рис. 10, а, источник тока I должен обеспечивать ток коллектора транзистора каскада усиления напряжения VT3 и базовый ток выходного транзистора VT1. Для нормальной работы схемы источника тока необходимо падение напряжения на нем VT1 не менее 1 В. Остальная часть общего падения напряжения приходится на выходной транзистор. Можно уменьшить минимальное падение на транзисторах выходного каскада, включив в выходном каскаде транзисторы по схеме с общим эмиттером (рис. 10, б). По этой схеме построен выходной каскад, например, ОУ AD823 фирмы Analog Devices.

На рис. 11 представлены графики зависимости напряжения насыщения VSAT выходных транзисторов этого усилителя от тока нагрузки IL для максимального (VS –VOH) и минимального (VOL) выходных напряжений. Очевидно, что при работе усилителя на холостом ходу максимальное выходное напряжение почти достигает напряжения питания, а минимальное — мало отличается от нуля. Еще лучшие характеристики на холостом ходу  обеспечивают усилители, у которых выходной каскад построен на комплементарных МОП-транзисторах  (рис.  10,  в).
Сопротивления полностью открытого канала верхнего и нижнего МОП-транзисторов выходного каскада ОУ типа TLC2272 фирмы Texas InstRuments составляют, соответственно, 500 и 200 Ом при питании усилителя от однополярного источника 5 В.

Если нагрузка RL включена между выходом ОУ и общей точкой схемы, так как показано на рис. 4, то при низких выходных напряжениях выходной ток также мал, и напряжение на открытом нижнем транзисторе усилителя весьма близко к нулю (доли милливольта). Если ток нагрузки велик, и нагрузка соединена другим выводом с плюсом источника питания или искусственной нулевой точкой, напряжение на полностью открытом выходном транзисторе может достигать больших значений (более 1 В). В некоторых применениях требуется не только полный размах выхода ОУ, но и полный размах (Rail-to-Rail) допустимых значений входного синфазного напряжения VСФ (вход с полным размахом). Это нужно, например, в схеме неинвертирующего повторителя, согласующего датчик сигнала с аналого-цифровым преобразователем. Для некоторых приложений необходимо, чтобы диапазон входных сигналов был ниже потенциала общей шины на 0,2…0,3 В. Это требуется при однополярном питании инвертирующего усилителя, где на вход должно  подаваться отрицательное напряжение (рис. 3), например, в схеме  фотометра (рис. 4), где полярность напряжения на инвертирующем входе ОУ  несколько ниже, чем на неинвертирующем. Усилители, имеющие вход с полным размахом, схемотехнически заметно сложнее, чем обычные. Других преимуществ, кроме возможности работы с широким диапазоном входного синфазного сигнала, они не имеют. Поэтому их следует применять только там, где действительно требуется полный размах входа.

На рис. 12, а приведена схема дифференциального входного каскада обычного ОУ. Он состоит из двух согласованных структур. Для того, чтобы входной сигнал мог достигать потенциала общей шины используются p-n-p-транзисторы.
Такое построение позволяет подавать на вход потенциал общей шины без нарушения работы входного каскада. При
более низком синфазном входном напряжении поведение входного каскада становится непредсказуемым. Часто наблюдается инверсия входов, при которой меняется знак обратной связи, и происходит переход ОУ в триггерный режим
(так называемое «защелкивание»). Поскольку напряжение на источнике тока VИТ в схеме на рис. 12, а должно быть не
менее 0,4 В (иначе он просто не будет работать), а напряжение база-эмиттер транзисторов VBE в активном режиме
составляет приближенно 0,6 В, то входной синфазный сигнал должен быть по крайней мере на 1 В меньше напряжения питания.

На рис. 12, б представлен дифференциальный каскад на n-канальных полевых транзисторах с управляюшим p-n-переходом (JFET-транзисторы). Поскольку пороговое напряжение исток-затвор таких транзисторов составляет  –2…–3 В, то можно легко обеспечить нормальную работу входного каскада ОУ при небольших отрицательных синфазных входных напряжениях. Именно так построен входной каскад ОУ AD823 с полным размахом выхода. Этот усилитель нормально работает при –1 В < VСФ < VS –1 В.

Если обязательно требуется работа ОУ с полным размахом входного напряжения, то применяют двойной комплементарный дифференциальный каскад (рис. 12, в). Биполярный вариант, показанный на рис. 12, в, используется в ОУ типа TLV245x и OP196, КМОП вариант этой схемы — в TLV247х и AD853х. Из схемы ясно, что оба дифференциальных усилителя входного каскада управляются одновременно. Дифференциальный усилитель (ДУ) с p-n-p-транзисторами работает до максимального уровня входных сигналов на 1 В ниже напряжения питания. Для нормальной работы n-p-n-усилителя требуется синфазный сигнал не менее 1 В. Таким образом, в зоне 1 В <VСФ < VS –1 В работают оба ДУ, а в зонах VСФ > VS –1 В и VСФ <1 В — только один. Это обстоятельство вызывает довольно значительное изменение входных токов и напряжения смещения нуля (до 3 нА и 70 мкВ у TLV245x) при переходе через
границы этих зон, что может вызвать искажения усиливаемого сигнала. Уменьшить эти искажения можно, включив последовательно с неинвертирующим входом резистор RC (рис. 3), сопротивление которого определяется по формуле

Rc = R1R2/R1+R2          (5)

В табл. 2 представлены основные параметры (типичные значения) некоторых типов ОУ, предназначенных для работы с однополярным питанием.

Схемы на ОУ с однополярным питанием

Линейный стабилизатор напряжения
Схема линейного стабилизатора напряжения на ОУ с регулирующим транзистором, включенным по схеме с ОК, представлена на рис. 13, а.

Схема содержит ОУ, включенный по схеме неинвертирующего усилителя с отрицательной обратной связью понапряжению,  источника опорного напряжения VREF и регулирующего n-p-n-транзистора VТ, включенного последовательно с нагрузкой. Выходное напряжение VOUT контролируется с помощью цепи отрицательной обратной связи, выполненной на резистивном делителе R1R2. ОУ играет роль усилителя ошибки. Ошибкой здесь является разность между опорным напряжением VREF, задаваемым источником опорного напряжения (ИОН) и
выходным напряжением делителя R1R2

ΔV = VREF — VOUT R1/R1+R2.   (6)

Питание операционного усилителя осуществляется однополярным положительным напряжением. При этом операционные усилители, рассчитанные на двухполярное питание +15 В можно использовать в схемах стабилизаторов
со входным напряжением до 30 В. Стабилизируемое выходное напряжение ограничено снизу минимальным синфазным входным напряжением ОУ, а сверху — суммой напряжения насыщения ОУ и напряжения насыщения база-эмиттер регулирующего транзистора, т. е. минимально допустимое напряжение вход-выход стабилизатора  при  применении
обычных ОУ будет большим (около 3 В). На рис. 13, б приведена схема стабилизатора с пониженным допустимым напряжением вход/выход (так называемый, LDO-стабилизатор). Здесь регулирующий транзистор включен
по схеме с ОЭ, поэтому могут быть проблемы с устойчивостью [2]. Минимально допустимое напряжение вход/выход в
этой схеме ограничено только напряжением насыщения коллектор-эмиттер регулирующего транзистора VT.

Прецизионный выпрямитель

Замечательная по простоте схема двухполупериодного прецизионного выпрямителя представлена на рис. 14.

Она вообще не содержит диодов. Однако в этой схеме могут применяться только ОУ с полным размахом входных и выходных напряжений (Rail-to-Rail). Усилители питаются обязательно от однополярного источника. Если VIN>0, то усилитель ОУ1 работает как неинвертирующий повторитель. В этом случае усилитель ОУ2 работает в дифференциальном включении и VOUT=VIN. При VIN<0 усилитель ОУ1 уходит в отрицательное насыщение, напряжение на его выходе становится равным нулю (питание однополярное!). Тогда усилитель ОУ2 переходит в режим инвертирующего повторителя, поэтому VOUT= –VIN. Как следствие, VOUT= |VIN|.

Усилитель ОУ2 всегда работает в линейном режиме, а потенциал неинвертирующего входа ОУ1 при VIN<0 становится ниже потенциала отрицательного полюса источника питания. Не все операционные усилители это допускают. Например, сдвоенный ОУ ОР291 как нельзя лучше подходит для этой схемы. Его входы защищены от дифференциального перенапряжения встречно-параллельно включенными диодами, причем в цепи баз входных транзисторов включены резисторы сопротивлением в 5 кОм. Это позволяет усилителю выдерживать при однополярном питании входное синфазное напряжение до –15 В. В этом случае резистор R1 можно не включать. Иное дело — сдвоенный усилитель ОР296. Он не имеет защитных резисторов, и при его применении в этой схеме необходимо включать резистор R1=2 кОм.
Изготовитель рекомендует для этой схемы при 5-вольтовом питании диапазон  входных  сигналов ±1 В. Из-за того, что усилитель ОУ1 долго выходит из насыщения, частотный диапазон схемы оказывается довольно узким — для ОУ ОР291 он составляет 0…2 кГц.

Схема измерения тока

Для измерения больших токов в линии, находящейся под относительно высоким потенциалом, может быть использована схема, представленная на рис. 15.

Ток, протекающий через нагрузку, создает напряжение VIN на шунте Rш, который здесь является датчиком тока. Полагаем ОУ идеальным. Тогда через инвертирующий вход усилителя ток не течет, и, поскольку напряжение между дифференциальными входами усилителя равно нулю, напряжение VIN приложено к левому резистору R. Ток через резистор R и коллектор транзистора VТ

lc = VIN/R = lL Rш/R    (7)

Пренебрегая током базы транзистора, найдем выходное напряжение схемы

VOUT = lCRT = lL RT Rш/R     (8)

Именно по этой схеме выполнен измеритель тока фирмы Burr-Brown INA168 (границы кристалла показаны на рис. 15 штриховой линией). Он допускает синфазное напряжение на входах до 60 В и коэффициент усиления напряжения на шунте до 100. Ток, потребляемый микросхемой, составляет всего 50 мкА. Микросхема LT1787 аналогичного назначения построена симметрично, т. к. имеет в своем составе усилитель с дифференциальными входами и выходами и нагрузку  в виде токового зеркала. Допустимое синфазное напряжение также 60 В. Динамический диапазон —12 бит (72 дБ). Микросхема измерителя тока МАХ471 имеет на кристалле шунтовой резистор, рассчитанный на ток до 3 А, а у МАХ4372 такого резистора нет, но зато ее погрешность преобразования не превышает 0,18%.

Цифро-аналоговый преобразователь
с выходом в виде напряжения

Комбинация ЦАП с токовым выходом, например, 12-битного AD7541А и ОУ с полным размахом показана на рис. 16.

Здесь используется инверсное включение резистивной матрицы R-2R. ОУ включен по схеме неинвертирующего усилителя с коэффициентом усиления 2. В качестве источника опорного напряжения может быть использован TL431. Выходное напряжение схемы определяется формулой

VOUT = 2VREF/4096*DI,          (9)

где DI — входной код.

Выводы

Операционные усилители, предназначенные для работы с биполярным питанием, могут работать в схемах с одним источником, однако амплитудный диапазон их входных и выходных сигналов может оказаться слишком узким. Операционные усилители, предназначенные для работы с одним источником,  в свою очередь, тоже могут работать в схемах с биполярным питанием. Необходимо только, чтобы разность потенциалов положительного и отрицательного источника не превышала предельно допустимого напряжения питания для данного типа усилителя. Если требуется усиливать сигналы переменного тока, то при однополярном питании целесообразно использовать цепи смещения и разделительные конденсаторы (рис. 7).
Если входной сигнал постоянного тока биполярный, то можно использовать цепи смещения, однако более удобно
введение в схему искусственной нулевой точки. Если предполагается работа со входными сигналами ниже потенциала общей шины при однополярном питании, следует в необходимых случаях предусмотреть меры для защиты входов усилителя.

Георгий Волович,
g_volovich@mail.Ru

Литература
1. Mancini R. Single Supply Op Amp Design Techniques // Application  RepoRt  SLOA030.  —  Texas  InstRuments
IncoRpoRated. — OctobeR 1999. — 23 p.
2. Волович Г. Устойчивость линейных интегральных стабилизаторов напряжения. — Схемотехника, 2001. № 11.

Добавить комментарий